If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12h^2+54h+60=0
a = 12; b = 54; c = +60;
Δ = b2-4ac
Δ = 542-4·12·60
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6}{2*12}=\frac{-60}{24} =-2+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6}{2*12}=\frac{-48}{24} =-2 $
| 6(y+5)=14.2 | | .6x+6x=180 | | 2/3x+x+5x=180 | | -3(1+h=1/3(3-12h) | | 75x-208=23x | | 0.00000000000000000000000000000091093822=x5,000,000 | | -5x+7=-12 | | x-(x+2)=10 | | (7p-2)(p+4)=0 | | –4a+4a+3=8 | | -(x=2)=10 | | 7/9=9/2x | | 7+2x=-23 | | -y^2+y-2=0 | | 4(1-x+2x=-3(x+1) | | 2x+8=(20x+8)/4 | | 10=-8y+5(y-4) | | -6x−14=22 | | 180-12x+2=13x-7 | | 20-4+a=4 | | j+8=-15 | | x−15=-10 | | -9+n=6 | | -10x-4=56 | | 4x^2+16x-54=0 | | 121/4c=9 | | X+46=2x-14 | | -8(-5+2a)=152 | | -9(1-5c=-(-9c+9) | | 1-6v-8=11 | | 9w=−63 | | 9f+16=76 |